Extensions 1→N→G→Q→1 with N=C22xD9 and Q=C22

Direct product G=NxQ with N=C22xD9 and Q=C22
dρLabelID
C24xD9144C2^4xD9288,839

Semidirect products G=N:Q with N=C22xD9 and Q=C22
extensionφ:Q→Out NdρLabelID
(C22xD9):1C22 = C22:3D36φ: C22/C1C22 ⊆ Out C22xD972(C2^2xD9):1C2^2288,92
(C22xD9):2C22 = C24:4D9φ: C22/C1C22 ⊆ Out C22xD972(C2^2xD9):2C2^2288,163
(C22xD9):3C22 = D4:6D18φ: C22/C1C22 ⊆ Out C22xD9724(C2^2xD9):3C2^2288,358
(C22xD9):4C22 = D4:8D18φ: C22/C1C22 ⊆ Out C22xD9724+(C2^2xD9):4C2^2288,363
(C22xD9):5C22 = C22xD36φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9):5C2^2288,354
(C22xD9):6C22 = C2xD4xD9φ: C22/C2C2 ⊆ Out C22xD972(C2^2xD9):6C2^2288,356
(C22xD9):7C22 = C22xC9:D4φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9):7C2^2288,366

Non-split extensions G=N.Q with N=C22xD9 and Q=C22
extensionφ:Q→Out NdρLabelID
(C22xD9).1C22 = C42:6D9φ: C22/C1C22 ⊆ Out C22xD9144(C2^2xD9).1C2^2288,84
(C22xD9).2C22 = C42:7D9φ: C22/C1C22 ⊆ Out C22xD9144(C2^2xD9).2C2^2288,85
(C22xD9).3C22 = C42:3D9φ: C22/C1C22 ⊆ Out C22xD9144(C2^2xD9).3C2^2288,86
(C22xD9).4C22 = D18:D4φ: C22/C1C22 ⊆ Out C22xD9144(C2^2xD9).4C2^2288,94
(C22xD9).5C22 = Dic9.D4φ: C22/C1C22 ⊆ Out C22xD9144(C2^2xD9).5C2^2288,95
(C22xD9).6C22 = C22.4D36φ: C22/C1C22 ⊆ Out C22xD9144(C2^2xD9).6C2^2288,96
(C22xD9).7C22 = D18.D4φ: C22/C1C22 ⊆ Out C22xD9144(C2^2xD9).7C2^2288,104
(C22xD9).8C22 = C4:C4:D9φ: C22/C1C22 ⊆ Out C22xD9144(C2^2xD9).8C2^2288,108
(C22xD9).9C22 = C23.28D18φ: C22/C1C22 ⊆ Out C22xD9144(C2^2xD9).9C2^2288,139
(C22xD9).10C22 = C36:7D4φ: C22/C1C22 ⊆ Out C22xD9144(C2^2xD9).10C2^2288,140
(C22xD9).11C22 = Dic9:D4φ: C22/C1C22 ⊆ Out C22xD9144(C2^2xD9).11C2^2288,149
(C22xD9).12C22 = C36:D4φ: C22/C1C22 ⊆ Out C22xD9144(C2^2xD9).12C2^2288,150
(C22xD9).13C22 = C36.23D4φ: C22/C1C22 ⊆ Out C22xD9144(C2^2xD9).13C2^2288,157
(C22xD9).14C22 = C42:2D9φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).14C2^2288,82
(C22xD9).15C22 = C4xD36φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).15C2^2288,83
(C22xD9).16C22 = Dic9:4D4φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).16C2^2288,91
(C22xD9).17C22 = C23.9D18φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).17C2^2288,93
(C22xD9).18C22 = C4:C4:7D9φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).18C2^2288,102
(C22xD9).19C22 = D36:C4φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).19C2^2288,103
(C22xD9).20C22 = C4:D36φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).20C2^2288,105
(C22xD9).21C22 = D18:Q8φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).21C2^2288,106
(C22xD9).22C22 = D18:2Q8φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).22C2^2288,107
(C22xD9).23C22 = C2xD18:C4φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).23C2^2288,137
(C22xD9).24C22 = C4xC9:D4φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).24C2^2288,138
(C22xD9).25C22 = C23:2D18φ: C22/C2C2 ⊆ Out C22xD972(C2^2xD9).25C2^2288,147
(C22xD9).26C22 = C36:2D4φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).26C2^2288,148
(C22xD9).27C22 = D18:3Q8φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).27C2^2288,156
(C22xD9).28C22 = C2xD36:5C2φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).28C2^2288,355
(C22xD9).29C22 = C2xD4:2D9φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).29C2^2288,357
(C22xD9).30C22 = C2xQ8:3D9φ: C22/C2C2 ⊆ Out C22xD9144(C2^2xD9).30C2^2288,360
(C22xD9).31C22 = C4oD4xD9φ: C22/C2C2 ⊆ Out C22xD9724(C2^2xD9).31C2^2288,362
(C22xD9).32C22 = C42xD9φ: trivial image144(C2^2xD9).32C2^2288,81
(C22xD9).33C22 = C22:C4xD9φ: trivial image72(C2^2xD9).33C2^2288,90
(C22xD9).34C22 = C4:C4xD9φ: trivial image144(C2^2xD9).34C2^2288,101
(C22xD9).35C22 = C22xC4xD9φ: trivial image144(C2^2xD9).35C2^2288,353
(C22xD9).36C22 = C2xQ8xD9φ: trivial image144(C2^2xD9).36C2^2288,359

׿
x
:
Z
F
o
wr
Q
<